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Abstract 

 
For local and average kernel based estimators, smoothness conditions ensure that 
the kernel order determines the rate at which the bias of the estimator goes to zero 
and thus allows the econometrician to control the rate of convergence. In practice, 
even with smoothness the estimation errors may be substantial and sensitive to 
the choice of the bandwidth and kernel. For distributions that do not have sufficient 
smoothness asymptotic theory may importantly differ from standard; for example, 
there may be no bandwidth for which average estimators attain root-n consistency. 
We demonstrate that non-convex combinations of estimators computed for 
different kernel/bandwidth pairs can reduce the trace of asymptotic mean square 
error relative even to the optimal kernel/bandwidth pair. Our combined estimator 
builds on these results. To construct it we provide new general estimators for 
degree of smoothness, optimal rate and for the biases and covariances of 
estimators. We show that a bootstrap estimator is consistent for the variance of 
local estimators but exhibits a large bias for the average estimators; a suitable 
adjustment is provided. 
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1. Introduction

Kernel estimation is a widely used method of nonparametric estimation that is becoming

more prevalent in empirical research, in part because of software applications in statistical

packages such as Stata, R, and XploRE. It is used to estimate density functions, conditional

means, variances and covariances, as well as higher order moments and their derivatives.

Important functionals are averages of these functions, e.g., the average derivative of the

conditional mean used in semiparametric estimation of single index models (Powell, Stock

and Stoker, 1989). Subject to suitable smoothness conditions, this averaging permits a

parametric convergence rate, despite nonparametric kernel estimators typically exhibiting

a slower rate of convergence.

The applications of kernel estimation in the empirical literature are varied: (un)condi

tional variance and covariance kernel estimates are, e.g., used for estimation of volatilities

and correlation in �nance (Hafner and Linton, 2010 and Long, Su and Ullah, 2011) and

testing for a¢ liation in auction models (Jun, Pinkse and Wan, 2010); kernel estimation of

the conditional mean is used in the analysis of the e¤ect of governance on growth (Huynh

and Jacho-Chavez, 2009), trade costs (Henderson and Millimet, 2008), Engel curves (Blun-

dell and Duncan, 1998), and estimation of distributional policy e¤ects (Rothe, 2010 and

DiNardo and Tobias, 2001); average derivative estimation is used to assess nonlinear pricing

in labour markets (Coppejans and Sieg, 2005) and for consumer demand analysis (Härdle,

Hildenbrand and Jerison, 1991 and Blundell, Duncan and Pendakur, 1998); a recent appli-

cation in kernel density estimation is in the analysis of bank loan recovery rates in Italy

(Calabrese and Zenga, 2010).

Implementation of kernel estimation methods requires the researcher to select a kernel

functionK(�) and bandwidth parameter h. These choices typically are based on asymptotic

results for these estimators that rely on smoothness assumptions. E.g., the rule-of thumb

plug-in method of bandwidth selection o¤ered for univariate density estimation in Silverman

(1986) assumes that the density has at least two continuous derivatives and speci�es the

use of a second order kernel. However, with enough smoothness, improvements in e¢ ciency
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can be obtained by using higher order kernels (see, e.g., Pagan and Ullah, PU, 1999 for

discussion), and the optimal bandwidth that balances the squared bias and variance needs

to be adapted to this degree of density smoothness. The use of higher order kernels and

smoothness requirements are instrumental in allowing claims of a parametric rate over a

range of bandwidth choices for average kernel based estimators; again, optimal bandwidth

and kernel choices are dependent on the assumed smoothness. For the average density

weighted derivative estimator (ADE) of Powell, Stock and Stoker (PSS, 1998), the density

of the k covariates is assumed to possess at least (k + 6)=2 continuous derivatives and a

kernel of order (k + 4)=2 is needed; the (direct) average derivatives estimator of Stoker

(1991) necessitates smoothness assumptions both on the density and conditional moment

E(yjX) (speci�cally, the existence of at least k + 2 continuous derivatives) in conjunction

with the use of a kernel of order k + 2:

The main theoretical purpose of the various smoothness conditions in the literature is

to ensure that the kernel order determines the rate at which the bias of the estimator goes

to zero (and thus to control this rate via the choice of kernel). Although the theoretical

results that utilize the smoothness assumptions (including the selection of optimal kernel

and bandwidth, e.g., Powell and Stoker, 1996) provide the appropriate asymptotics, �nite

sample behaviour of the estimators even when these assumptions are satis�ed still exhibits

signi�cant variability depending on the actual underlying distributions and may be very

sensitive to the bandwidth choice and the choice of kernel; these results are documented in

many papers, including, e.g., Hansen (2005).

Our simulations con�rm these results. The better performing bandwidths (oversmoothed

or undersmoothed) and kernels (second or higher order kernel) di¤er depending on the un-

derlying distribution. Moreover, this dependence (in �nite samples) is not restricted to the

theoretical smoothness properties and may be a¤ected by much subtler properties of the

underlying distribution (e.g., magnitude of derivatives). Frequently encountered functions

and distributions, such as mixtures of normals, while satisfying the smoothness assump-

tions often exhibit very high values of derivatives that are more reminiscent of lack of

smoothness (see, e.g., Marron and Wand, 1992). Speci�cally, the simulations reveal that
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the root mean squared error (RMSE), for the ADE with distribution of the regressors that

satisfy all smoothness assumptions can be as much as 4 to 10 times that obtained under

the Gaussian density (see Table 1 in Schafgans and Zinde-Walsh, SZW, 2010).1 The root

mean integrated error for the univariate kernel density estimation of a mixture of normal

distribution was 3 to 4 times that obtained under a Gaussian density; this observed error

discrepancy for the mixture of normal density estimate was comparable to that observed

for a non-smooth density (see Table 1 in Kotlyarova and Zinde-Walsh, KZW, 2007).

Clearly, estimators that adapt to unknown smoothness are warranted. The literature

does provide some solutions to the bandwidth and kernel selection that explicitly takes

account of uncertainty about the underlying smoothness. In an early paper Woodroofe,

1970 proposed to estimate the smoothness of a density function; his approach was not given

much prominence in the research that followed where su¢ cient smoothness was instead

assumed. SZW, 2010 recently successfully implemented his approach in the context of

ADE. The advantage is that the selection of the tuning parameter re�ects the estimated

smoothness in an adaptive way, thereby enabling to approach the optimal rate in various

cases. KZW, 2006 proposed a combined estimator that was adaptive to the unknown

smoothness and that could achieve asymptotically the best available (a priori unknown)

rate. SZW, 2010 make an argument (in the ADE case) that a combined estimator with

appropriate selection of tuning parameters can outperform the estimator with optimal

bandwidth not only in case of insu¢ cient smoothness (as in KZW, 2006) but with su¢ cient

smoothness as well.

In this paper we pursue further the agenda of robustifying nonparametric estimators

against lack of smoothness by estimating consistently the optimal rate under unknown

smoothness (extending the result of Woodroofe, 1970 and SZW, 2010 to the general case)

1For the ADE with underlying Gaussian density in the two regressors, denoted (s,s), the RMSE using the

better performing fourth order kernel varied from from 0.08 to 0.15 for the range of bandwidths considered;

for a similar selection of bandwidths the ADE with underlying mixture of normal densities provided RMSE

ranges such as 0.43-0.53 in the (s,m) setting using the better performing fourth order kernel and 0.76-1.49 in

the (s,d) setting using the better performing second order kernel (here d and m refer to di¤erent mixtures).
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and combining estimators with di¤erent kernels and bandwidths to reduce sensitivity. The

results are applied to two classes of estimators: to local kernel based estimators such as

univariate and multivariate density, density derivatives, and (weighted) conditional moment

and (weighted) derivatives of conditional moment estimators, and to average kernel based

estimators such as average density, average (weighted) conditional moments, and average

((density)-weighted) derivative of conditional moment estimators. A non-exaustive list of

estimators considered here is presented in Table A.1 in the Appendix. In Table A2, various

relevant results are summarized; they clarify that optimal rates are determined by the kernel

order only when there is su¢ cient smoothness of functions that drive the bias expansion;

in the absence of su¢ cient smoothness the term with the parametric rate of convergence

for average kernel based estimators may be dominated by terms depending on the kernel

and bandwidth.2 It should be noted that our framework is not limited to these estimators

but incorporates other estimators such as the average outer product of the gradient and

average hessian estimator considered in Samarov (1993) and Donkers and Schafgans (2008).

A similar analysis applies to some extremum estimators such as the smoothed maximum

score where a combined estimator was examined in KZW, 2010; other estimators such as

conditional quantiles could also be studied within the same approach.

The performance of estimators with di¤erent tuning parameters and possibly based on

di¤erent kernels is evaluated by means of the trAMSE; this refers to the trace of the leading

term in the asymptotic expansion of MSE, or if the leading term is parametric we consider

that term and the next expansion term that depends on the bandwidth. We show that

even with knowledge of the optimal bandwidth there always exists a linear combination

of estimators that has a smaller trAMSE than that of the optimal estimator. This result

exploits the fact that the distribution of an oversmoothed estimator is dominated by bias,

and that (like for a jackknife) one can �nd weights that will give a zero leading bias term

in the linear combination while reducing the variance. This result was presented in SZW,

2As Dalalyan et al. (2006) document, even when there is su¢ cient smoothness for parametric rates the

choice of bandwidth and kernel a¤ects second-order terms in MSE which are often not much smaller than

�rst-order terms.



Adapting kernel estimation to uncertain smoothness p. 6

2010 for ADE; here we give a general (and corrected) version.

We illustrate the proposed approach by summarizing some simulation results that show

the advantages of using the combined estimator, especially in situations where the estima-

tion errors are large relative to the magnitude of the value being estimated.

Section 2 introduces notation and the assumptions underlying the classes of estimators.

Section 3 examines the estimation of the smoothness via rate of the bias; this provides an

estimated optimal bandwidth rate. Section 4 demonstrates the existence of linear combi-

nations of kernel estimators with di¤erent bandwidths that can provide a smaller trAMSE

than with the optimal bandwidth by automatically removing the asymptotic bias and

possibly reducing the asymptotic variance. Implementation of the "combined estimator"

requires estimation of biases and covariances and is considered in section 5. Section 6

summarizes obtained simulation results for various estimators and demonstrates that the

combined estimator o¤ers signi�cant advantages when insu¢ cient smoothness results in

very large relative errors.

2. Notation and Classes of Estimators

We assume that the data represent an i.i.d. sample of observations that could be given by

xi 2 Rk or (yi; xTi )T where yi 2 R is the dependent variable (y could be discrete, e.g. a

binary variable) and xi 2 Rk continuous explanatory variables.3

The two types of estimators we consider, local kernel based estimators and average

kernel based estimators, involve the choice of a kernel K and bandwidth h such that h! 0

and N !1 and are generically denoted as �̂N(K;h). The function, value of the function at

a particular point (e.g. density), or a parameter vector that is being estimated is denoted

�0; a notation also used in SZW, 2010. In Table A.1 in the Appendix relevant expressions

of �̂N(K;h) for each estimator are given.

3In some cases one can consider discrete regressors for which special kernels have been developed, e.g.,

see Racine and Li (2007). Härdle and Horowitz (1996) consider the ADE estimator in the presence

of discrete regressors; they provide a separate noniterative estimator for the parameters of the discrete

regressors.



Adapting kernel estimation to uncertain smoothness p. 7

The kernel functionK : Rk ! R is de�ned to have the order v(K) and satis�es standard

assumptions, e.g., PU, 1999. The kernel does not need to be symmetric; as argued in

KZW, 2007, asymmetric functions may pick up some irregularities that will be discarded

by symmetric smoothing functions (see also Abadir and Lawford, 2004).

The papers KZW, 2007 and SZW, 2010 have examined the behaviour of some of these

estimators under relaxed smoothness conditions on the functions that drive the bias ex-

pansion; they demonstrate that the optimal rates are determined by the kernel order only

when there is su¢ cient smoothness of these functions. Denote by f(x) the density of x; and

by g(x) a conditional moment of interest (e.g. g(x) = E(yjX = x) or g(x) = E(yrjX = x)

for given r > 0). Assume that the support of the density of x is 
 (a convex (possibly

unbounded) subset of Rk) with nonempty interior 
0 and f(x) = 0 for all x 2 @
; where

@
 denotes the boundary of 
 as in, e.g., Härdle and Stoker (1989) and PSS, 1989.

For any �smooth�function ' and x 2 Rk let '0(x) stand for the vector (@'(x)=@x1; ::;

@'(x)=@xk)
T ; and '(m)(x) denote an mth partial derivative of '(x) given by @m'(x)=

(@m1x1:::@
mkxk), where m1+ :::+mk = m: We follow SZW, 2010 in formalizing the degree

of smoothness of functions '(x); de�ned on some support 
; in terms of the Hölder space

of functions, Cm+�(
); with integer m and 0 < � � 1; where any '(x) 2 Cm+�(
) is m

times continuously di¤erentiable on 
 with '(m)(�); satisfying Hölder�s condition of order

� : ��'(m)(x+�x)� '(m)(x)�� � !'(x) k�xk� :
It can be said that v = m+� is the degree of smoothness of '. Alternatively, the modulus

of continuity could be used to indicate the degree of smoothness.

In the multivariate case it may be desirable to specify di¤erent smoothness conditions

for the di¤erent components of a function, such as the density. To streamline exposition

here we abstract from that possibility and assume the same smoothness conditions for

all the components of a function. SZW, 2010 details the possible di¤erent treatment for

smoothness with respect to the di¤erent components of x; the approach there can be ex-

tended to the other estimators considered in this paper. We consider estimators that use
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the same bandwidth for all components.4

The two main high level assumptions of our estimator �̂(K;h); describing the bias and

variance, are presented next.

Assume that the degree of smoothness of the functions that are relevant for the bias

expansion of the estimator (such as the density f(x) or its derivative f 0(x) and the con-

ditional moment g(x)) is v; see the relevant assumptions in, e.g. PU, 1999. Denote by

B(K;h) the bias of the estimator �̂(K;h); E(�̂N(K;h)� �0); and de�ne

�v = min(v; v(K));

then in this notation for all the estimators that we consider (see Table A.1) we get

jB(K;h)j � !h�v: With insu¢ cient smoothness, the rate at which the bias of the esti-

mator goes to zero is not determined by the choice of the order of the kernel but by the

degree of smoothness of appropriate functions. We make a stronger assumption on the

bias, namely, that it is stabilized at this rate; this is the assumption made by Woodroofe

(1970) for density estimation and is also made in SZW, 2010 for ADE.

Assumption 1. As N !1; h! 0 and h = O(N��) with � > �L > 0

h��vbias(�̂N(K;h))! B(K); (1)

for some �v > 0; where the vector B(K) = (B1(K); :::Bk(K))0 is such that 0 < jB`(K)j <1

for ` = 1; :::; k:

The bound �L may be needed to ensure that the rest of the bias expansion converges to

zero su¢ ciently fast.

The assumption on the variance below di¤ers for local and averaged estimators:

Assumption 2. As N!hd(k) !1; h! 0; for some ! � 0; d(k) � 1

(a) for local kernel based estimators: there is a �nite positive de�nite matrix �(K) such

that

N!hd(k)var(�̂N(K;h))! �(K)

4We do not assume, however, that the optimal bandwidth is the same for all components.
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(b) for average kernel based estimators: there exist �nite positive de�nite matrices �1(K)

and �2 such that an expansion for the variance is

var(�̂N(K;h)) = N
�!h�d(k) [�1(K) + o(h

�)] +N�1 [�2 + o(h
�)]

Conditions that guarantee this high level assumption include the existence of various

second moments and continuity of E(y2rjx). The assumption on the variance holds for

kernel density and conditional mean estimators where the asymptotic variance is of the

form (Nhk)�1�(K) and for mth partial derivatives of kernel density with (Nhk+m)�1�(K):

For the average kernel based estimators, this assumption highlights that there are two

possible leading terms. Given su¢ cient smoothness, averaging can yield a parametric rate

of convergence for a range of bandwidths; the non-parametric term could determine the

overall rate in the case of insu¢ cient smoothness or poor bandwidth rate choice; even when

the parametric term dominates, the nonparametric term which depends on the kernel and

bandwidth could be important in �nite sample. For example, for the ADE PSS estimator

the variance is expressed as N�2h�(k+2) [�1(K) + o(h
�)] +N�1 [�2 + o(h

�)] :

We summarize representative results about the estimators in Table A.2 in the Appendix.

The table lists the rates of the leading terms in the AMSE expansion, the functions whose

degree of smoothness is speci�ed as v; the optimal rate that depends on �v and may di¤er

from standard under insu¢ cient smoothness. As in SZW, 2010 the optimal rate is de�ned to

balance the bandwidth dependent part in the expression in (b) with the bias, and provides

the optimal rate when the parametric rate is not achievable because of lack of smoothness.

The optimal bandwidth is de�ned to have the rate N��(�v) where �(�v) � !
2�v+d(k)

; for the

estimators in Table A.2 ! can be 1 or 2 and d(k) is k or k + 2: When smoothness holds,

the order of the kernel determines the asymptotic results that we list from the literature

(see, e.g. PU, 1999 or Li and Racine, 2007). When smoothness assumption is violated we

list (in the notation of this paper) the non-standard results from the KZW, 2007 and SZW,

2010 papers for density and ADE; the results for average density and for the conditional

mean are obtained similarly. Similar results were also obtained for the SMS estimator

(KZW, 2010). The general conclusion is that with insu¢ cient smoothness the di¤erence in
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asymptotic performance may be substantial.

3. Estimation of asymptotic rate of the bias

From the table we can see that knowledge of �v would allow one to �nd the optimal rate of the

bandwidth that would give the smallest trace of asymptotic MSE. Under the Assumptions 1

and 2 �v can be consistently estimated; this idea was applied by Woodroofe, 1970 to density

estimation.

Denote by ho some oversmoothed bandwidth. We assume that such a bandwidth can be

obtained. For example, it would be provided by an �optimal�plug-in bandwidth computed

on the basis of v(K) rather than �v; such a bandwidth would provide oversmoothing if

�v < v(k); to cover the smooth case as well it could be magni�ed by some N " for a small

" > 0: In SZW, 2010 the generalized cross-validation bandwidth was used, since it is known

to oversmooth in the ADE PSS case.

De�ne a sequence of bandwidths fhtgHt=1 such that ht = cthoN

t for some ct > 0;

0 � 
1 < ::: < 
H where 
H is such that hH = cHhoN
H ! 0: E.g. for ADE if ho is given

by cross-validation that has the rate N� 1
2�v+k select 
H <

1
2�v+k

: Let T de�ne a subset of all

pairs f(ht; ht0); t; t0 = 1; :::H with t0 < tg with cardinality Q: 2 � Q � H(H+1)
2

:

Theorem 1. Under Assumptions 1 and 2 the estimator for �v;b�v; given by
b�v =

X
(t;t0)2T

ln

��
�̂N(K;ht)� �̂N(K;ht0)

�2�
�
�
lnht

2 � 1
Q

X
(t;t0)2T

lnht
2

�
X

(t;t0)2T

�
lnht2 � 1

Q

X
(t;t0)2T

lnht2
�2 ; (2)

satis�es b�v � �v = op((lnN)�1): A bandwidth vector with optimal rate is consistently esti-
mated bydhopt = cN��(b�v).
Proof. The proof requires comparison of the asymptotic bias and variance contribution in

the stochastic expansion of the estimator. It is essentially the same as that given in SZW,

2010 Theorem 3.3a; the only di¤erence being that there speci�c 
H and rate of hopt are

used. �
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In SZW, 2010 the constants were selected close to 1 but so as to ensure a spread of

bandwidths for the given sample size.

4. Asymptotic optimality of linear combinations of estimators

It was argued in KZW, 2006 that linear combinations of estimators based on di¤erent band-

widths and kernels could provide the rate associated with the best of those estimators, where

performance is evaluated in terms of minimizing the trace of the asymptotic MSE. Linear

combinations of estimators typically used in the literature consider convex combinations;

KZW, 2006 proposed using weights of di¤erent signs in the case of insu¢ cient smoothness

where bias is a prominent obstacle to reducing the estimation error.

To compute the trace of MSE for linear combinations of estimators in addition to the

bias and variance of Assumptions 1 and 2, covariances of the estimators are needed. The

covariances were derived for the density, SMS and ADE estimators in the respective papers

KZW (2007,2010) and SZW (2010); in this paper they are summarized in the Appendix

for the cases of conditional mean and average density as well.

SZW, 2010 gave a theoretical basis for combining estimators for the ADE: it was shown

that there exists a linear combination of kernel estimators with di¤erent bandwidths such

that it asymptotically outperforms the estimator that uses the optimal bandwidth. In the

cases of ADE and average density when there is su¢ cient smoothness for the parametric

term to determine the rate of AMSE, there is still an advantage in reducing the second

term in the expansion of the variance and the result would still apply to the case of a

parametric rate. For the cases of possibly parametric rates the theorem considers then the

second order (bandwidth dependent) terms in the expansion. The theorem below provides

this result in the general case; the proof in the Appendix details the general case and also

corrects an inaccuracy in SZW, 2010.

Theorem 2. Under the Assumptions 1 and 2 with �v � 2, for any kernel K and given

an optimal bandwidth vector hopt there exists a set of bandwidth vectors h1; ::; hS with

hs = csh
opt for cs > 1; and a corresponding set of weights, fasg :

PS
s=1 as = 1 such that the
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linear combination,
PS

s=1 as�̂N(K;hs) provides

trAMSE(
PS

s=1 as�̂N(K;hs)) < trAMSE
�
�N(K;h

opt)
�
: (3)

Proof. See Appendix. �

The proof gives a speci�c example of a set of bandwidths and weights that satisfy (3):

The proof of this result relies on the fact that with weights of di¤erent signs the leading

terms in the biases can be eliminated and the weights can be selected in a way that reduces

the variance. One kernel is examined in the proof; more kernels would allow for more

�exibility in the choice of bandwidths. This theorem could be modi�ed (as in SZW, 2010)

to account for unequal bandwidths for the di¤erent components of the vector �̂N .

The condition �v � 2 in the Theorem 2 holds if K is a second order kernel, and also for

higher order kernels when bias goes to zero no faster than h2: The proof can be modi�ed

to allow for higher �v; but we focus here on insu¢ cient smoothness when the errors from a

mistaken choice of bandwidth are substantial. It can be seen from the construction in the

proof that a larger S allows more �exibility in the choice of the constants cs that de�ne the

bandwidths.

5. Combined estimator: implementation

The theoretical results of the previous section give guidance for selection of estimators (cor-

responding to bandwidths indicated by Theorem 2) to include into the linear combination;

in this section we discuss the issue of �nding the coe¢ cients that would minimize the trace

of estimated MSE. This requires the estimation of the biases and covariances between the

di¤erent estimators.

5.1. Bias estimation. The theorem below provides a consistent estimator for the as-

ymptotic bias. The estimator uses the di¤erence between an oversmoothed estimator, at

a bandwidth ho; that converges at the rate h��vo to the true parameter vector (�0) plus the

asymptotic bias, and an undersmoothed estimator, at a bandwidth hu; that converges to

�0 plus a random variable that goes to zero at the rate
�
N�!h

�d(k)
u

� 1
2
. The di¤erence is
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constructed in a way that the term h�voB(K) dominates the di¤erence and thereby provides

a consistent bias estimator at ho: De�ne ho as ho = dhoptN � ; with max f0; �Lg < � < �H

where �L = �(b�v) � 1
2b�v ; �H = �(b�v) and hu =dhoptN��; with 0 < � < �H and �H =

2b�v�
d(k)
: E.g.

for ADE the appropriate choices were �L = (1� k+2
2b�v ) 1

2b�v+k+2 ; �H = 2
2b�v+k+2 ; and �H = 2b�v�

k+2
:

Theorem 3. A consistent estimator of the asymptotic bias for the oversmoothed estimator

�̂N(K;ho) is provided by

dbias�̂N(K;ho) = �̂N(K;ho)� �̂N(K;hu);
with ho; hu de�ned above. A consistent estimator of the bias for �̂N(K;h) with h ! 0 as

N !1 and h = O(N��) with � > �L > 0 is given by

h
b�vh�b�vo dbias�̂N(K;ho):

Proof. The proof requires comparison of the asymptotic bias and variance contribution

in the stochastic expansion of the estimator and is the same as for Theorem 3.3b in SZW,

2010. �

5.2. Covariance estimation. The covariances can be estimated by constructing ap-

propriately consistent plug-in estimators for the leading terms in the asymptotic expansion

of the covariances, or alternatively, by bootstrap. The Appendix provides the bootstrap

derivations for the covariances. For validity of bootstrap, standard stronger moment as-

sumptions such as boundedness of conditional fourth moments of a(x; yi) de�ned in the

Appendix are required: of course, when a(x; yi) is bounded as for density, no additional

conditions are needed.

Bootstrap for covariances of local estimators is straightforward; it is sketched in the

Appendix.

For average estimators, estimating covariances by the resampling bootstrap leads to a

signi�cant bias in the nonparametric term in the bias expansion. Cattaneo et al. (2010)

demonstrated this for the ADE. Here we derive a similar result for the non-derivative-based

estimators, such as average density, average density weighted moments. For all the average
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estimators considered, the leading non-parametric term in the bootstrap estimator is three

times the leading non-parametric term of the variance of the estimator. Considering the

fact that under our assumptions this term may well dominate the variance, this bias may be

overwhelming. Of course, knowing this, we can correct by dividing the estimator by three.

Even when the parametric part dominates, since for the purposes of our analysis only the

nonparametric part matters for the trade-o¤s in the trAMSE for the combined estimator,

dividing the bootstrap covariance estimators by three is appropriate. Alternatively (as in

Cattaneo et al., 2010), a bias correction would result if in bootstrap variance estimation

the bandwidth h of �̂ were replaced by hvar = 3
� 1
d(k)h; this will automatically reduce the

nonparametric part by a factor of 3.

Minimization of the estimated trace of MSE provides the weights for the di¤erent esti-

mators in the linear combination.

6. Performance of the combined estimator: summary of the evidence

In SZW, 2010 it was shown how linear combinations can automatically eliminate bias and

perform better than bias corrected "optimal" bandwidth estimators. Their simulations,

with sample size 1000, are summarized in Table 1.

Table 1: ADE - RMSE comparison.

Model Best K=h RMSE range, % hopt; K4 Comb

(s,s) K4=h3 7:8� 23:4 8:5 9:6

(s,m) K4=h0 42:7� 60:7 49:5 56:1

(m,m) K2=h0 67:2� 93:4 81:1 86:9

(s,c) K4=h
opt
2 44:4� 49:9 44:4 46:5

(s,d) K2=h
gcv
5 76:6� 153:8 103:8 87:2

(c,d) K2=h
gcv
5 47:9� 105:4 63:2 69:0

Here all the asymptotic conditions of PSS are satis�ed and in theory all these estimators

should be converging at a parametric rate. The models are represented by the underlying

distributions of the two regressors: s (standard normal), m (trimodal normal mixture), c
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(double claw) and d (discrete comb). For second-order terms a higher order kernel should

be advantageous; the result should be stable over a range of bandwidths. The wide range

of results here indicates that none of these conclusions are valid. By contrast, we see that

the estimated optimal rate is not far from the best, which is an advantage; the combined

estimator further improves where the errors are large.

For density estimation in KZW, 2007 the root mean integrated squared error, RMISE

was evaluated over a range of bandwidths and kernels. The results from their simulations,

with a sample size of 2000, are summarized in Table 2.

Table 2: Density estimation - RIMSE comparison.

Model Best K (at hgcv) RMISE range Comb24

%

normal K4 2:4� 2:8 2:5

mixed normal K4 6:5� 7:1 6:5

non-smooth K2 6:8� 6:7 6:4

Here the error for normal mixture is much larger than for the Gaussian and is comparable

to a non-smooth example. The combined estimator using two kernels with a range of band-

widths avoids the penalty associated with the incorrect choice and provides improvements

over the best in problematic cases.

KZW, 2010 study a combined smoothed maximum score estimator. Whereas this es-

timator does not �t within the two classes of estimators considered, using the combined

estimator provides similar bene�ts. With a sample size of 4000 their results are presented in

Table 3. The estimator error depends very much on the selected kernel, with the 4th order

kernel f4 not always the best, and sometimes the worst. Their results reveal, moreover,

that two kernels of the same 4th order (labelled f4 and g4) may give strikingly di¤erent

results even in the smooth case despite having the same asymptotic theory. The labels of

the models which end with an H are heteroskedastic, the others homoskedastic; S stands

for Gaussian model, M for mixture of normal, and NS for a non-smooth model. The

combined estimator is often the best, or at least close to the best.
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Table 3: SMS - RMSE comparison.

Model Best K (at hopt RMSE range Comb

bias-corrected %

S f4 4:0� 6:0 4:7

SH f2 4:7� 6:6 4:9

M f4 2:8� 4:1 2:4

MH g4 1:3� 2:6 1:2

NS f4 9:6� 14:6 10:2

NSH f4 2:2� 2:9 2:2

7. Conclusions

We brie�y summarize our �ndings here. Smoothness requirements lie at the heart of asymp-

totic properties of kernel based estimators. For distributions with insu¢ cient smoothness,

asymptotic theory may importantly di¤er from standard; for example; there may be no

bandwidth for which average estimators attain root-N consistency. As we show, even for

distributions such as mixtures of normals that deviate from Gaussian but still satisfy the

assumptions for asymptotic e¢ ciency of the estimator, the estimation errors may be sub-

stantial and very sensitive to the choice of the bandwidth and kernel.

To overcome these problems we propose an estimator that takes account of the (un-

known) rate of the bias for any given kernel and combines estimators with di¤erent kernels

and bandwidths. We estimate the bias rate and optimal bandwidth rate. We demon-

strate that non-convex combinations of estimators computed for di¤erent kernel/bandwidth

pairs can reduce the trace of asymptotic mean square error relative to the optimal ker-

nel/bandwidth pair; we indicate that such combined estimators require some oversmoothed

bandwidths relative to the estimated optimal rate to trade o¤ the leading bias terms. To

construct the combined estimator, weights that minimize the trace of estimated asymptotic

mean square error need to be found; we provide estimators for the biases and covariances

of our estimators using di¤erent kernels and bandwidths. We investigate the resampling

bootstrap estimator for variances and show consistency for the class of local estimators.
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For average estimators the resampling bootstrap exhibits a large bias that is thrice the

nonparametric term in the variance expansion (under the insu¢ cient smoothness condi-

tions we are concerned that this term may easily be the leading one); the �nding is similar

to what Cattaneo et al. (2010) found for the ADE estimator and extends their result to

other average estimators. With suitable adjustments the bootstrap variance estimator can

be used in the procedure for the combined estimation.

8. Appendix

We provide the results for average density and the Nadaraya-Watson estimator that con�rm

that they can satisfy Assumption 1 and provide the covariances. The results for the covari-

ances can be adapted easily to allow for unequal bandwidths for the di¤erent components;

the derivations are similar to those in SZW and are omitted.

Average Density Estimator.

Consider the average density estimator:

�̂N(K;h) =
1
N

NX
i=1

f̂(K;h)(xi) =
1

N(N�1)h
�k

NX
i=1

NX
j 6=i

K(
xi � xj
h

):

We have

E(�̂N(K;h) = h�kE

�
E(K(

xi � xj
h

)jxj)
�

= h�kE

�Z
K(
xi � xj
h

)f(xi)dxi

�
= E

�Z
K(u)f(xj + uh)du

�
= E(f(x)) + h�vB(K) + o(h�v)

and the covariance is provided in Lemma 1.

Lemma 1. Under Assumptions 1 and 2, if hs ! 0 and N2hks ! 1 for s = 1; ::; S; the

covariance of �̂N(Ks1 ; hs1) and �̂N(Ks2 ; hs2); �s1;s2 ; for s1; s2 = 1; ::; S is

�s1;s2 = N
�2h�ks2 (�1(Ks1 ; Ks2 ; hs1 ; hs2) + o(1)) + (�2 + o(1))N

�1;
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with

�1(Ks1 ; Ks2 ; hs1 ; hs2) = 2E [f(xi)]�2(Ks1 ; Ks2 ; hs1 ; hs2);

�2(Ks1 ; Ks2 ; hs1 ; hs2) =

Z
Ks1(u)Ks2(u

hs1
hs2
)du; and

�2 = 4E
�
(f(xi)� Ef(xi))2

�
:

Conditional Mean Estimator.

Consider the Nadarya Watson Kernel regression estimator:

�̂N(K;h; x) = ĝ(x) =
1

Nhk

PN
i=1K(

Xi�x
h
)Yi

1
Nhk

PN
i=1K(

Xi�x
h
)

Following the notation in Li and Racine, 2007 (page 61),

ĝ(x)� g(x) = (ĝ(x)� g(x)) f̂(x)
f̂(x)

� m̂(x)

f̂(x)
=
m̂1(x) + m̂2(x)

f̂(x)
=
m̂1(x) + m̂2(x)

f(x) + op(1)

where

Yi = g(Xi) + ui

m̂1(x) =
1

Nhk

NX
i=1

(g(Xi)� g(x))K(
Xi � x
h

); m̂2(x) =
1

Nh�k

NX
i=1

uiK(
Xi � x
h

)

Assuming that f(x) > 0; ĝ(x)� g(x) = Op
�

m̂(x)
f(x)+op(1)

�
:

E(m̂1(x)) = h�k
�
E((g(z)� g(x))K(z � x

h
)

�
= h�k

�Z
(g(z)� g(x))f(z)K(z � x

h
)dz

�
=

�Z
f(x+ uh)(g(x+ uh)� g(x))K(u)du

�
= h�vBm(K; x) + o(h�v)

E(m̂2(x)) = 0

we have E (ĝ(x)� g(x)) = h�vBm(K; x)=f(x) + o(h�v) and B(K; x) = Bm(K; x)=f(x): The

covariance is provided in Lemma 2.
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Lemma 2. Under Assumptions 1 and 2, if hs ! 0 and Nhks ! 1 for s = 1; ::; S; the

covariance of �̂N(Ks1 ; hs1) and �̂N(Ks2 ; hs2); �s1;s2 ; for s1; s2 = 1; ::; S is

�s1;s2 = N
�1h�ks2 (�1(Ks1 ; Ks2 ; hs1 ; hs2) + o(1)) ;

with

�1(Ks1 ; Ks2 ; hs1 ; hs2) =
�2(x)

f(x)
�2(Ks1 ; Ks2 ; hs1 ; hs2); and

�2(Ks1 ; Ks2 ; hs1 ; hs2) =

Z
Ks1(u)Ks2(u

hs1
hs2
)du:

Tables.
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Proof of Theorem 2.

To provide a proof it is su¢ cient to give a set of bandwidths and a corresponding set of

weights, such that the leading bias terms will cancel out and the variance will not in�ate.

Consider each ith component of �̂N(K;hs) separately and suppress the subscript i:

We start by �nding for any given set of bandwidths, hs; s = 1; :::S the weights, as; such

that they sum to one, eliminate the leading bias term and give a vector with the smallest

norm.

To do this solve

min�Ss=1a
2
s; subject to �

S
s=1as = 1; �

S
s=1ash

�v
s = 0; (A.1)

noting that �Ss=1asBi(K)h�vs = 0 implies �Ss=1ash�vs = 0: Denoting h�vs by bs; the Lagrangean

is

�Ss=1a
2
s � �( �Ss=1as � 1)� ��Ss=1asbs:

From the FOC, we obtain

� = 2�a2s; � =
2� 2S�a2s
�bs

; and as =
1

2
(�+ �bs):

Denoting �a2s by �; we obtain as = �+
1�S�
�bs

bs: By squaring and summing as for s = 1; :::S,

we get

� = S�2 + 2�(1� S�) + (1� S�)2 �b
2
s

(�bs)
2 :

This quadratic equation for � has a root of 1
S
as a solution to the FOC, the other root

is � = �b2s
S�b2s�(�bs)2

; this provides the general form for �:

With such weights the trace AMSE of a linear combination reduces to the trace of the

asymptotic variance of the linear combination, that includes the covariance terms. Denote

�̂N(K;hs) by �̂s; by �ii the ith diagonal element of the N�!�(K) matrix in Assumption
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2(a) or of N�!�1(K) in Assumption 2(b), whichever is appropriate.

tr(Avar(
XS

s=1
as�̂s))=

XS

s1;s2
as1as2

Xk

i=1
Acov(�̂s1;i; �̂s2;i)

�
XS

s1;s2
jas1as2j

Xk

i=1

���Acov(�̂s1;i; �̂s2;i)���
�

XS

s1;s2
jas1as2j

Xk

i=1
max
j=1;2

Avar(�̂sj)i

=
XS

s1;s2
jas1as2jmax

j=1;2
h�d(k)sj

Xk

i=1
�ii

�
XS

s1;s2
jas1as2j

�
min

j=1;2;i=1;::;k
csj ;i

��d(k)Xk

i=1

�
hopti
��d(k)

�ii

�
�
min
s;i
cs;i

��d(k)
S� � tr

�
Avar�̂

opt
�
:

Here the second inequality is the usual bound for covariance via variances, then Assump-

tion 2 for the variance is used. The values of the selected bandwidths (csj ;ih
opt
i ) = hsj ; j =

1; 2 are substituted: note that the optimal bandwidth has components with the same rates

but may vary in the constant since Bi(K) may di¤er for di¤erent i; so cs;ihopti = cs;1h
opt
1 ; to

bound we use the smallest of all the cs;i: Then we also use the bound

�Ss1;s2=1 jas1ias2ij � S
�
�Ss1;s2=1 jas1ij

2�1=2 ��Ss1;s2=1 jas2ij2�1=2
= S�1=2�1=2 = S�:

Recall that � = �b2s
S�b2s�(�bs)2

: Superiority of the combination will follow if we can show

that there exist cs;i such that

(min cs;i)
�d(k)S

�c2�vs;i

S�c2�vs;i �
�
�c�vs;i

�2 < 1:
Suppose that hopt1 is the largest among the components of the optimal bandwidth. Then

cs;1 is the smallest among cs;i for a �xed s: Then it is su¢ cient to show

(min cs;1)
�d(k)S

�c2�vs;1

S�c2�vs;1 �
�
�c�vs;1

�2 < 1:
Equivalently, (dropping the subscript 1)�

(min cs)
�d(k) � 1

�
S�c2�vs + (�c

�v
s)
2
< 0: (A.2)
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This is monotone in d(k) and d(k) � 1: Thus (A.2) would hold for any d(k) as long as it

holds for d(k) = 1. Thus set d(k) = 1; de�ne cs = (1 + x)
s
�v ; x > 0. Then

�
(min cs)

�1 � 1
�
= (1 + x)�

1
v � 1 = �e(x; v) < 0 for � > 0;

�Ss=1c
2�v
s = �

S
s=1(1 + x)

2s = (1 + x)2
[(1+x)2S�1]
(1+x)2�1

�Ss=1c
�v
s = �

S
s=1(1 + x)

s = (1 + x)
[(1+x)S�1]
(1+x)�1 = (1 + x)

[(1+x)S�1]
x

:

Substituting these expressions into (A.2)) yield

(1 + x)2
�e(x;v)Sx((1+x)S�1)((1+x)S+1)+(x+2)((1+x)S�1)

2

x2(x+2)

= (1 + x)2
�
(1 + x)S � 1

� �e(x;v)Sx((1+x)S+1)+(x+2)((1+x)S�1)
x2(x+2)

:

With x > 0; and denoting �(x; v; S) = �e(x; v)S(1+x)2 [(1+x)
2S�1]

x(x+2)
+(1+x)2

[(1+x)S�1]
2

x2
; we

need to prove �(x; v; S) < 0: Equivalently, we show

�e(x; v)Sx
�
(1 + x)S + 1

�
+ (x+ 2)

�
(1 + x)S � 1

�
� ~�(x; v; S) < 0

with ~�(x; v; S) increasing in v :

@~�

@v
=
2

�2
ln (x+ 1) (x+ 1)�

2
� Sx

�
(1 + x)S + 1

�
> 0:

For v = 2 we get e(x; v) = 1 � (1 + x)� 1
2 and for ~�(x; v; S) to be negative, we need

(x + 2)
�
(1 + x)S � 1

�
<
�
1� (1 + x)� 1

2

�
S
�
(1 + x)S + 1

�
. This inequality will be true if

x+ 2 � x
�
1� (1 + x)� 1

2

�
S, or S � (x+2)

x
�
1�(1+x)�

1
2

�. For example, for x = 2; S = 5.
This demonstrates that for any kernel there exists a set of bandwidths that in a

linear combination removes the leading term of the asymptotic bias while reducing the

variance. �

Bootstrap for the covariances.

Here we sketch the results for the bootstrap estimators. In the case of local estimators,

bootstrap estimators of the covariances are straightforward and suitable for obtaining the

weights for the combined estimator. The averaged case presents some extra problems. It

was examined in detail for ADE by Cattaneo et al. (2010), who have shown that in that
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case the bootstrap estimator for the bandwidth dependent part of the variance is biased.

Here we consider some of the other averaged estimators, e.g. averaged density, and indicate

that similar results hold.

First, note that it is su¢ cient to examine variances.

Due to the linear structure of local and average kernel based estimators, a linear com-

bination of such estimators, a1�̂(Ks1 ; h1) + a2�̂(Ks2 ; h2), can be represented as yet another

estimator, �̂N(K;h). Consider hs2=hs1 = d; hs1 = h; then for a1�̂(Ks1 ; h) + a2�̂(Ks2 ; dh)

write

h�ks2 Ks2(
xi � x
hs2

) = h�kd�kKs2(d
�1xi � x

h
) = h�k �Ks2(

xi � x
h

);

similarly, for derivatives, e.g.,

h�(k+1)s2
K 0
s2
(
xi � x
hs2

) = h�(k+1)d�(k+1)K 0
s2
(d�1

xi � x
h

)

= h�(k+1) �K 0
s2
(
xi � x
h

);

where �Ks2(w) = d
�kKs2(d

�1w): Then linear combinations a1�̂(Ks1 ; h)+a2�̂(Ks2 ; dh) become

�̂N(K;h ) for K = a1Ks1 + a2 �Ks2 :

This means that in order to prove validity of bootstrap for covariance we only need

to prove validity of bootstrap for the variance var�̂N(K;h ) for kernels and estimators

that satisfy assumptions; the covariance cov
�
�̂N(Ks1 ; hs1); �̂N(Ks2 ; hs2)

�
can be expressed

as 2var�̂N(K;h) � 1
2

h
var�̂N(Ks1 ; hs1) + var�̂N(Ks2 ; hs2)

i
where K = 1

2

�
Ks1 + �Ks2

�
is a

kernel that satis�es assumptions on the kernel with order that is the lower of the two.

The subscript by N denotes the moments of the empirical distribution.

We consider the bootstrap variance in the following three settings.

I. Density, density weighted conditional moments at a point.

�̂I � �̂I(x) = N�1�ia(x; yi)h
�kK

�
xi � x
h

�
;

where for density a(x; yi) = 1; for density weighted conditional moment a(x; yi) =

yri : For conditional moment a(x; yi) =
1

f̂(x)
yri and would require dealing with the
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denominator; here we abstain from the estimation of a possible denominator, which

vanishes when density weighting is used.

II. Order m derivatives of density, density weighted conditional moment at a point.

De�ne for any vector of integers (p) = (p1; :::pk); p1 + ::: + pk = p; the operator @(p)

applied to a di¤erentiable function q(x) as @(p)q(x) = @p

@x
p1
1 :::@x

pk
k

q(x): Then

�̂II � �̂II(x) =
X
all (m)

�̂II;(m);

�̂II;(m) � �̂II;(m)(x) = N
�1�ia(x; yi)h

�(k+m)@(m)K

�
xi � x
h

�
;

where for density a(x; yi) = 1; for density weighted conditional moment a(x; yi) = yri :

III. Averages. Write each of the estimators in I and II as 1
N
�i�̂i(x); then the average

estimator is

�̂III =
1

N(N � 1)�
N
j=1�i6=j �̂i(xj):

In the following we restrict ourselves to looking at moments under the empirical distri-

bution since the discrepancy with the bootstrap estimated moments can be controlled by

suitably choosing the number of bootstraps.

Case I. Consider the bootstrapped estimator de�ning �̂i � h�ka(x; yi)K
�
xi�x
h

�
:

�̂
�
I =

1

N
�Ni�=1�̂i� =

1

N
�Ni�=1h

�ka(x; yi�)K

�
xi� � x
h

�
and denoting a(x; yi) by ai; K

�
xi�x
h

�
by Ki

�̂
�
I =

1

N
�Ni�=1h

�kai�Ki� :

Then

EN �̂
�
I =

�
1

N
�Ni�=1ENh

�kai�Ki�

�
=
1

N
�Ni=1h

�kaiKi (A.3)

=
1

N
�Ni=1�̂i = �̂I
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Next consider the empirical variance of our bootstrap estimator:

varN �̂
�
I = EN �̂

�2
I �

�
EN �̂

�
I

�2
:

Clearly

�̂
�2
I = N

�2�Ni�=1�̂
2

i� +N
�2�Ni�1=1�

N
i�2 6=i�1 �̂i

�
1
�̂i�2 :

Taking the empirical moment of the �rst term on the right hand side yields

EN(N
�2�Ni�=1�̂

2

i�) =

�
1

N2
�Ni�=1EN(h

�2ka2i�K
2
i�)

�
(A.4)

=
1

N2
�Ni=1h

�2ka2iK
2
i :

Similarly the second term yields

EN

h
N�2�Ni�1=1�

N
i�2 6=i�1 �̂i

�
1
�̂i�2

i
= N�2�Ni�1=1�

N
i�2 6=i�1EN(�̂i

�
1
�̂i�2)

= N�2�Ni�1=1�
N
i�2 6=i�1

1

N2
�Ni1=1�

N
i2=1

(�̂i1 �̂i2) (A.5)

=
N(N � 1)
N2

1

N2
�Ni1=1�

N
i2=1

�̂i1 �̂i2

=
N(N � 1)
N2

�̂
2

I =

�
1� 1

N

�
�̂
2

I :

So combining

varN �̂
�
I =

1

N2
�Ni=1h

�2ka2iK
2
i �

1

N
�̂
2

I : (A.6)

Next, compute expectation EvarN �̂
�
I :

EvarN �̂
�
I = N

�1h�kE(h�ka2iK
2
i )�

1

N
E(�̂

2

I); (A.7)

where

E(�̂
2

I) = E(N�2�Ni=1�̂
2

i +N
�2�Ni1=1�

N
i2 6=i1 �̂i1 �̂i2)

= N�1E(�̂
2

i ) +
N(N � 1)
N2

E(�̂i)
2

= N�1E(h�2ka2iK
2
i ) +

N(N � 1)
N2

�
E(h�kaiKi)

�2
= N�1h�kE(h�ka2iK

2
i ) +

N(N � 1)
N2

�
E(h�kaiKi)

�2
= O(1):
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Thus substituting into (A.7) we get

EvarN �̂
�
I = N�1h�kE(h�ka2iK

2
i ) +O(N

�1)

= N�1h�k[E(h�ka2iK
2
i ) + o(1)]:

The expression for the variance var�̂I is

var(�̂I) =
�
E(�̂

2

i )� E(�̂i)2
�
N�1

= N�1h�kE(h�ka2iK
2
i )�N�1 �E(h�kaiKi)

�2
= N�1h�k[E(h�ka2iK

2
i ) + o(1)]:

Thus

Nhk
���var�̂I � EvarN �̂�I��� = o(1):

Next, we show that the empirical (and bootstrap) variance estimator is consistent for

the variance, in other words, we show that Nhk
���varN �̂�I � var�̂I��� converges to zero in prob-

ability. IndeedNhk
���varN �̂�I � var�̂I��� � NhkjvarN �̂�I�EvarN �̂�I j+Nhk ���var�̂I � EvarN �̂�I��� :

By Chebyshev�s inequality for any " > 0

Pr(Nhk
���varN �̂�I � var�̂I��� > ")

� Pr(Nhk
���varN �̂�I � EvarN �̂�I��� > "�Nhk ���EvarN �̂�I � var�̂I���)

� (Nhk)
2

("�NhkjEvarN �̂�I�var�̂Ij)2
h
var

�
varN �̂

�
I

�i
� 4(Nhk)

2

"2

h
var

�
varN �̂

�
I

�i
;

where we consider N large enough that Nhk
���EvarN �̂�I � var�̂I��� < "

2
for the last inequality.

Now all that is needed is to evaluate the order of the terms in
�
Nhk

�2
var

�
varN �̂

�
I

�
and show that they go to zero.

Using the expression in (A.6) with �̂i for brevity we can derive var
�
varN �̂

�
I

�
var

�
varN �̂

�
I

�
= N�5(N � 1)2var(b�2i ) + 2N�5(N � 1)var(�̂i�̂i0) (A.8)

+4N�5(N � 1)(N � 2)cov(�̂i�̂i0 ; �̂i�̂i00)� 4N�5(N � 1)2cov
�
�̂
2

i ; �̂i�̂i0
�
:
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which yield

N�5(N � 1)2var(h�2kK2
i a
2
i ) + 2N

�5(N � 1)vari1 6=i2(h�2kKi1Ki2ai1ai2)

�4N�5(N � 1)2covi1 6=i2
�
h�2kK2

i1
a2i1 ; h

�2kKi1Ki2ai1ai2
�

+4N�5(N � 1)(N � 2)covi1 6=i2 6=i3(h�2kKi1Ki2ai1ai2 ; h
�2kKi1Ki3ai1ai3)

= O
�
N�3h�3k +N�4h�2k +N�3h�2k +N�3h�k

�
= O(N�3h�3k):

The orders follow after noting, e.g., that var(h�2kK2
i a
2
i ) = O(h

�3k):

Substituting now into the Chebyshev inequality we obtain that the empirical variance

converges in probability to the leading term in the variance.

Case II. The only di¢ culty comes from extra weights h�m that will enter the appropriate

rate; the rest of the derivation is similar to I.

Case III. Consider the average estimator that is based on I: �̂III = 1
N(N�1)�

N
i=1�j 6=i�̂i;j,

where �̂i;j = a(xj; yi)h�kK
�xi�xj

h

�
:

Recall that the second moments for the estimator are as follows:

E�̂
2

III = 1
N2(N�1)2E�

N
i=1�j 6=i�

N
i0=1�j0 6=i0 �̂i;j �̂i0;j0

= 1
N2(N�1)2

0BBB@
�Ni=1�j 6=iE

�
�̂
2

i;j + �̂i;j �̂j;i

�
+�Ni=1�j 6=i�j0 6=j 6=iE

�
�̂i;j �̂i;j0 + �̂i;j �̂j0;i + �̂j;i�̂i;j0 + �̂j;i�̂j0;i

�
+�Ni=1�j 6=i�i0 6=j 6=i�j0 6=i0 6=j 6=iE�̂i;j �̂i0;j0

1CCCA

= 1
N2(N�1)2
i6=j 6=j0

0BBB@
N(N � 1)E�̂2i;j +N(N � 1)E�̂i;j �̂j;i
+N(N � 1)(N � 2)

�
E�̂i;j �̂i;j0 + E�̂i;j �̂j0;i + E�̂j;i�̂i;j0 + E�̂j;i�̂j0;i

�
+N(N � 1)(N � 2)(N � 3)

�
E�̂i;j

�2
1CCCA

and

var�̂III =
1

N(N�1)
i6=j 6=j0

0@ E�̂
2

i;j + E�̂i;j �̂j;i � 2(2N � 3)
�
E�̂i;j

�2
+(N � 2)

�
E�̂i;j �̂i;j0 + E�̂i;j �̂j0;i + E�̂j;i�̂i;j0 + E�̂j;i�̂j0;i

�
1A ; (A.9)

using var�̂III = E�̂
2

III �
�
E�̂III

�2
= E�̂

2

III �
 
E�̂i;j
i6=j

!2
: Since E�̂i;j

i6=j
= O(1); E�̂

2

i;j
i6=j

=

O(h�k); E�̂i;j �̂j;i
i6=j

= O(h�k); E�̂i;j �̂i;j0
i6=j 6=j0

= O(1), etc., the leading non-parametric term of the
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variance is N�2
�
E�̂

2

i;j + E�̂i;j �̂j;i

�
= O

�
N�2h�k

�
,whereas the leading parametric term is

N�1
�
E�̂i;j �̂i;j0 + E�̂i;j �̂j0;i + E�̂j;i�̂i;j0 + E�̂j;i�̂j0;i � 4

�
E�̂i;j

�2�
= O(N�1).

Consider now the bootstrapped estimator for Case III

�̂
�
III =

1

N(N � 1)�
N
i�=1�j� 6=i� �̂i�;j�Ii�j� ;

where Ii�j� = I(xi� 6= xj�). Note that it excludes combinations of observations for which

xi� = xj� :
6

EN �̂
�
III = EN

�
�̂i�;j�Ii�j�

�
i� 6=j�

= N�2�Ni=1�
N
j=1�̂i;jIij = N

�2�Ni=1�j 6=i�̂i;j =
N�1
N
�̂III ; for the

original sample, Iij = 0 i¤ i = j.

Thus, EN �̂
�
III is the original full-sample estimator, �̂III ; up to the multiple (1� 1

N
):

Next consider the empirical variance of the bootstrap estimator: varN �̂
�
III = EN �̂

�2
III ��

EN �̂
�
III

�2
.

We have EN �̂
�2
III =

1
N2(N�1)2EN�

N
i�=1�j� 6=i��

N
i0�=1�j0� 6=i0� �̂i�;j� �̂i0�;j0�Ii�j�Ii0�j0�

= 1
N2(N�1)2

0BBB@
�Ni�=1�j� 6=i�EN

�
�̂
2

i�;j� + �̂i�;j� �̂j�;i�
�
Ii�j�

+�Ni�=1�j� 6=i��j0� 6=j� 6=i�EN

�
�̂i�;j� �̂i�;j0� + �̂i�;j� �̂j0�;i� + �̂j�;i� �̂i�;j0� + �̂j�;i� �̂j0�;i�

�
Ii�j�Ii�j0�

+�Ni�=1�j� 6=i��i0� 6=j� 6=i��j0� 6=i0� 6=j� 6=iEN �̂i�;j� �̂i0�;j0�Ii�j�Ii0�j0�

1CCCA

= 1
N2(N�1)2

0BBB@
N(N � 1)N�2�Ni=1�

N
j=1

�
�̂
2

i;j + �̂i;j �̂j;i

�
Iij

+N(N � 1)(N � 2)N�3�Ni=1�
N
j=1�

N
j0=1

�
�̂i;j �̂i;j0 + �̂i;j �̂j0;i + �̂j;i�̂i;j0 + �̂j;i�̂j0;i

�
IijIij0

+N(N � 1)(N � 2)(N � 3)N�4�Ni=1�
N
j=1�

N
i0=1�

N
j0=1�̂i;j �̂i0;j0IijIi0j0

1CCCA

= 1
N3(N�1)

0BBB@
�Ni=1�j 6=i

�
�̂
2

i;j + �̂i;j �̂j;i

�
+N�1(N � 2)�Ni=1�j 6=i�j0 6=i

�
�̂i;j �̂i;j0 + �̂i;j �̂j0;i + �̂j;i�̂i;j0 + �̂j;i�̂j0;i

�
+N�2(N � 2)(N � 3)�Ni=1�j 6=i�Ni0=1�j0 6=i0 �̂i;j �̂i0;j0

1CCCA
6For ADE this happens automatically for a symmetric kernel since then K 0(0) = 0; but for average

density this is not the case and Ii�j� is needed.
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and

varN �̂
�
III = EN �̂

�2
III �

�
N�2�Ni=1�j 6=i�̂i;j

�2

= 1
N3(N�1)

0BBB@
�Ni=1�j 6=i

�
�̂
2

i;j + �̂i;j �̂j;i

�
+N�1(N � 2)�Ni=1�j 6=i�j0 6=i

�
�̂i;j �̂i;j0 + �̂i;j �̂j0;i + �̂j;i�̂i;j0 + �̂j;i�̂j0;i

�
�2N�2 (2N � 3)�Ni=1�j 6=i�Ni0=1�j0 6=i0 �̂i;j �̂i0;j0

1CCCA :

Similarly to var�̂III in (A.9) we express varN �̂
�
III using non-overlapping indices in the

multiple sums:

varN �̂
�
III = 1

N3(N�1)

0BBBBBBBBBBBBB@

�Ni=1�j 6=i

�
�̂
2

i;j + �̂i;j �̂j;i

�
+N�1(N � 2)�Ni=1�j 6=i

�
�̂i;j �̂i;j + �̂i;j �̂j;i + �̂j;i�̂i;j + �̂j;i�̂j;i

�
+N�1(N � 2)�Ni=1�j 6=i�j0 6=i6=j

�
�̂i;j �̂i;j0 + �̂i;j �̂j0;i + �̂j;i�̂i;j0 + �̂j;i�̂j0;i

�
�2N�2 (2N � 3)�Ni=1�j 6=i

�
�̂
2

i;j + �̂i;j �̂j;i

�
�2N�2 (2N � 3)�Ni=1�j 6=i�j0 6=j 6=i

�
�̂i;j �̂i;j0 + �̂i;j �̂j0;i + �̂j;i�̂i;j0 + �̂j;i�̂j0;i

�
�2N�2 (2N � 3)�Ni=1�j 6=i�i0 6=j 6=i�j0 6=i0 6=j 6=i�̂i;j �̂i0;j0

1CCCCCCCCCCCCCA

= 1
N5(N�1)

0BBB@
(3N2 � 8N + 6)�Ni=1�j 6=i

�
�̂
2

i;j + �̂i;j �̂j;i

�
+(N2 � 6N + 6)�Ni=1�j 6=i�j0 6=i6=j

�
�̂i;j �̂i;j0 + �̂i;j �̂j0;i + �̂j;i�̂i;j0 + �̂j;i�̂j0;i

�
�2 (2N � 3)�Ni=1�j 6=i�i0 6=j 6=i�j0 6=i0 6=j 6=i�̂i;j �̂i0;j0

1CCCA :
Consider next the convergence of each term to the corresponding one in var�̂III :

For example,
1

N3(N�1)�
N
i=1�j 6=i

�
�̂
2

i;j + �̂i;j �̂j;i

�
has expectation

N�2[E�̂
2

i;j + E�̂i;j �̂j;i];

where [E�̂
2

i;j+E�̂i;j �̂j;i] = O(h
�k) while the variance of this term isO(N�6h�3k)+O(N�5h�2k);

by Chebyshev�s inequality this term converges to the corresponding term in the variance.

Similarly, convergence can be shown for other terms.
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Note that the expected value of varN �̂
�
III is

E
�
varN �̂

�
III

�
= 1

N4

i6=j 6=j0

0@ (3N2 � 8N + 6)E
�
�̂
2

i;j + �̂i;j �̂j;i

�
� 2 (2N � 3) (N � 2)(N � 3)

�
E�̂i;j

�2
+(N2 � 6N + 6) (N � 2)E

�
�̂i;j �̂i;j0 + �̂i;j �̂j0;i + �̂j;i�̂i;j0 + �̂j;i�̂j0;i

�
1A :

Although the leading parametric term here is the same as in var�̂III , the leading non-

parametric term is three times the leading non-parametric term of var�̂III . Thus the

bootstrap estimator is biased for the bandwidth dependent term. �
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